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§ 1.— Hustorical Introduction.

1 proposE, in the first place, to give a brief account of the principal theories of the
vibrations and flexure of a thin elastic plate hitherto put forward, and afterwards to
apply the method of one of them to the case when the plate in its natural state has
finite curvature.

Passing over the early attempts of Mdlle. SopBIE GERMAIN, the first mathematician
who succeeded in obtaining a theory of the flexure of a thin plane plate was Poisson.
In his memoir * he obtains the differential equation for the deflection of the plate,
which is generally admitted, and certain boundary-conditions, which have met with
less general acceptance. The idea of PorssoN's method may be simply stated. The
plate being very thin, we may expand all the functions which occur in the equations
of equilibrium and boundary-conditions in powers of the variable expressing the
distance of a particle from the middle-surface in the natural state, then, taking only
the terms up to the third order, we obtain the differential equations for the determi-
nation of the displacements which are generally admitted. The meaning of PoissoN’s
boundary-conditions is as follows*:—Suppose the plate to form part of an infinite

A

OF

* ¢« Mémoire sur ’'Equilibre et le Mouvement des Corps élastiques,” ¢ Paris Acad. Mém.,” 1829,
t Cf. Tuomnsox and Tair, ‘ Natural Philosophy,” part 2, pp. 188-9.
3 R 2 : 26.11.88
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492 MR. A. E. H. LOVE ON THE SMALL FREE VIBRATIONS

plate, and to be held in its actual position, partly by the forces directly applied to its
mass, and partly by the action of the remainder of the plate exerted across the
boundary ; if the plate be now cut out, it will be necessary, in order to hold it in the
same configuration, to apply at every point of its edge a distribution of force and
couple identical with that exerted by the remainder before the plate was cut out..
Now, it has been shown by Kircarorr* that these equations express too much, and
that it is not generally possible to satisfy them; but the method proposed by
TiromsoN and Tarrt gives a rational explanation of KirRcHHOFF’S union of two of
Porssox’s boundary-conditions in one, and renders his theory complete. However,
the objection raised by pE St. VENANT] to the fundamental assumption that the
stresses and strains in an element can be expanded in integral powers of the distance
from the middle-surface, seems to require a different theory.

The next epoch in the theory of plates is marked by KIRCHHOFFS memoir just
referred to. The method rests on two assumptions, viz. : (1) Every straight line of
the plate which was originally perpendicular to the plane bounding surfaces remains
straight after the deformation, and perpendicular to the surfaces which were originally
parallel to the plane bounding surfaces; (2) all the elements of the middle-surface
(v.e., the surface which in the natural state was midway between the plane parallel
bounding surfaces) remain unstretched. Both these assumptions may be shown to be
approximately true in the cases of flexure and transverse vibration, but, as assump-
tions, they appear unwarrantable. In this memoir of Kircmmorr’'s the union of two
of PorssoN’s boundary-conditions in one was first effected, the method employed to
obtain the equations being that of virtual work. The theory of this memoir will be
referred to as KircHHOFF'S  first theory.”

KircamOFF § has given a general method for the treatment of elastic bodies, some
of whose dimensions are indefinitely small in comparison with others. In this method
we consider, in the first place, the equilibrium of an element of the body all whose
dimensions are of the same order as the indefinitely small dimensions. When we
know the potential caergy due to the internal strain of such an element, we obtain
by integration over the remaining dimensions the whole potential energy due to the
elastic strain of the body. Then, taking into account all the forces which act on the
body, we can form the equation of virtual work, which will lead directly to the
differential equations and boundary-conditions of our problem.

In KircnHOFF'S method it appears that, to a first approximation, the bodily forces
produce displacements which are negligible compared with those produced by the
surface-tractions exerted upon the element by contiguous elements, and that, to the

% “Ueber das Gleichgewicht und die Bewegung einer elastischen Scheibe,” ¢ CrirLE, Journ. Math.,’
vol. 40.

t Loc. cit., pp. 190-1. '

$ Translation of Crusscr’s ¢ Elasticitit,” Note on § 73, p. 725.

§ ¢ Vorlesungen tiber Mathematische Physik,” pp. 406 et seq.
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AND DEFORMATION OF A THIN ELASTIC SHELL. 493

same order of approximation, the aisplacements, when divided by finite quantities of
one dimension in length, are negligible compared with the strains.

The application of this method to the theory of plates appears to have been first
made by GEHRING, a pupil of KIRCHHOFF'S, at the latter’s request ; and the results
will be found in Kircmuorr's thirtieth lecture, and in Cressca’s ¢Theorie der
Elasticitit fester Korper,”§§ 64 et seq.  We shall call the theory thus deduced Kircn-
HOFF'S “second theory.” Porsson and Kircauorr had both arrived at the equations
S, T, R = 0,* which express that the traction exerted on an element of a surface
normal to the middle-surface of the plate is everywhere tangential to the middle-
surface. These equations are fundamental in KircHHOFF'S second theory. This
appears to lie at the root of the objection raised by pE St. VENANT? to this theory, as
it is stated by him that S and T, if they exist, may produce important effects,
especially when the material of the plate is not isotropic..

It seems unnecessary to explain in detail THoMsON and TAIr's treatment of the
problem. We need only note here that the equations S, T, R = 0 are a basis for this
theory also.

[Added July, 1888.—An important inference from the method is that a line of
particles initially normal to the middle-surface is approximately normal to this surface
after strain. This is expressed by the vanishing of the shears @ and b, as given by
equations (11) snfra. This conclusion is intimately bound up with the conclusion that
S and T vanish. At the edge of the plate S and T may have given values which do
not vanish, and the approximate perpendicularity of line-elements originally perpen-
dicular to the middle-surface will here break down. The transition from a state of
things in which S and T exist at the edge to one in which they vanish, on a surface
parallel to the edge and very near to it, is illustrated by the discussion in THOMSON
and Tarr's ‘Natural Philosophy,” §§721-729. The conclusion seems to be that
Kironuorr’s general method for the treatment of elastic bodies, some of whose
dimensions are indefinitely small in corparison with others, cannot be applied to the
elements situated very near to the edge of a plate, as the strain is not produced in
these by the action of contiguous elements. We may, nevertheless, regard it as
giving correctly, not only the potential energy due to the strain of an element at a
distance from the edge, but also the whole potential energy arising from the strain in
all the elements. It will thus lead us to the right differential equations of motion or
equilibrium and boundary-conditions. |

The theory of the flexure of an elastic plate has been placed in a much clearer light
by the researches of BoussiNesq, who has treated the subject in a masterly manner
in two memoirs. In the first of these] he has certainly proved that S =0, T =0,
R = 01is an approximation to the actual state of stress within an element of the

* T use TromsoN and TArr’s notation for the stresses, strains, and elastic constants.
+ Translation of Crepscr’s ¢ Elasticitit,” p. 691.
1 ¢ LiouviLig, Journal de Math.,” 1871.
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494 MR. A. E. H. LOVE ON THE SMALL FREE VIBRATIONS

plate; and he says that R = 0 to a higher degree of approximation than S and T.
Taking 2k for the thickness of the plate, and the plane of wy for the middle-surface
in the natural state, we have, on integration, with reference to z,

: ’ or, ouN g
T=- f./z <pX ta a!/> =
U

~p a(Q ,
5=~ | ,<PY Tt a;,) z

: [h ol 03
R = -—}_ﬁ(pZ +o a-y)dz.

Assuming that the bodily forces are not such that if applied to a body of finite
size they would produce deformations indefinitely great compared with those produced
in the plate, and that P, Q, U do not vary rapidly from one element to another, we
see that S, T, R are small compared with P, Q, U. BoussiNusq proceeds to express
three of the strains in terms of the rest by means of the relations S, T, R =0, as
was done in KircuuorF’s second theory ; then, by means of these approximate values,
he finds S, T to a higher order, and on substituting in the general equations of equili-
brium obtains the weli-known equation for the deflection of the plate. The method
of securing the union of two of PoissonN’s boundary-conditions in one is the same as
that previously given by Tmomson and Tair.

BoussiNesQ returned to the subject in 1879, in a second memoir published in
‘LrouviLLe’s Journal” Apparently dissatisfied with the assumptions S, T =0, he
“proposed to consider the subject in the following manner. Let the plate be divided
‘into similar elementary rectangular prisms, whereof the linear dimensions are all
comparable, and suppose these prisms bounded by the plane surfaces of the plate, and
by pairs of parallel planes at right angles to these surfaces. T'wo neighbouring
prisms must always be in nearly the same condition as regards strain, except in the
case of prisms situated near the edge. Hence, generally, the component stresses will
be approximately the same at all points on the same surface parallel to the middle-
surface, and not infinitely near the edge of the plate. IHence, in this kind of
equilibrium, the stresses will be approximately independent of the position on the
middle-surface of the centre of the element. This is precisely KircHHOFF'S result*
deduced from the kinematics of the system, and it appears certainly true when the
plate is very thin. BoussiNesQ wishes his theory to apply to plates of small finite
thickness, and he proposes to replace the equations just found by the following

or _

- . )
0, or 0 08 oS 0
ow

R=0, =0 5= =0 aasey B U)=0

dy

* ¢ Vorlesungen,” p. 453, remark on equations (8).
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AND DEFORMATION OF A THIN ELASTIC SHELL. 495

these suppositions are more general than those of the former paper, and enable the
author to take account better of the effects of solotropy of the material of the plate.

De Sr. VENANT* obtains the equations for flexure on the assumptions (1) that
R =0, (2) that the middle-surface of the plate is bent without stretching, so that
the extension of any line-element through a point distant z from the middle surface
and parallel thereto is z/p, where p is the radius of curvature of the normal section of
the middle-surface through a line parallel to the element. From these suppositions,
of which the first is justified in the manner of BoussiNusQ’s memoirs, the ordinary
equations are deduced and extended to the case of aeolotropic plates. From the
inapplicability of the second of these suppositions to the case when the plate is
initially curvedt we may be justified in denying it the right to be a foundation for
the theory.

The question between the methods of KircHHOFF’s second theory and BoussiNEsQ's
memoirs may be taken to be that of the degree of approximation obtainable by the
former. It seems to be established that the terms which occur in CLEBsCH’S equations]
are correct to the order of approximation adopted ; but the question arises whether, if
it were desirable to obtain a higher degree of approximation in the equations, this
could be effected by means of KircHHOFF'S second theory; and it appears that, so
long as the equations S, T = 0 are retained with R = 0 for the purpose of giving
three of the strains in terms of the rest, this question must be answered in the
negative. It must be observed that KircHHOFF only uses these equations for this
purpose, just as BoussiNEsQ does in his first memoir, while the equations and con-
ditions are found by applying the principle of virtual work. ’

In a recent paper§ I have proposed a modification of KircHHOFF's second theory,
with the view of showing how his kinematical equations, whose accuracy has been
disputed by Boussinesq, can be made exact. The equations referred to are those
unnumbered on page 452 of the ¢ Vorlesungen.” In these certain differential
coefficients are introduced, and afterwards neglected as small ; and BoussiNmsqQ has
contended that they should be retained. In the paper referred to I have endeavoured
to show that these differential coefficients have no meaning so long as we are treating
the equilibrium of an elementary portion of the plate, all whose dimensions are of
the same order as the thickness, so that the equations can be made exact by simply
omitting these differential coefficients. As will hereafter appear, KIRCHHOFF’S process
applies directly to the theory ef a thin elastic shell, and the modification proposed in
the theory of plates has place equally in that of shells. This will be fully explained
in the sequel (Art. 2).

* Translation of CriBscu. Note to §73.

+ This will be proved in the sequel.

1 ¢ Elasticitdt,” pp. 306, 307, equations (105) and (106).

§ «“ Note on Krrcunorr’s Theory of the Deformation of Elastic Plates,” ¢ Cambridge Phil. Soc. Proc.,’
vol. 6, 1887.
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496 MR. A, E. H. LOVE ON THE SMALL FREE VIBRATIONS

§2. Theory of Shells.

In this paper the potential energy of deformation of an isotropic elastic shell is
investigated by the same method as that employed by Krrcmmorr in his discussion of
the vibrations of a plane plate.* The shell is supposed to be bounded by two surfaces
parallel to its middle-surface, and is deformed in any arbitrary manner. The expres-
sion given by KirceHOFF for the energy of the plate per uuit area of its middle-
surface is '

‘ 0

3 KA [912 +ri 20+ 5@ —pg)g]

+ 2Kh [0'12 4+ oy + 77+ *]-"_%*5 (o, + UQ)QT
where 24 is the thickness of the platé, K the rigidity, and 0/(1 + 0) = /(1 — o), &
being the ratio of linear lateral contraction to linear longitudinal extension of the
material ; oy, o, are the extensions of two line-elements of the middle-surface initially

at right angles, and 7 the complement of the angle between them after strain;
¢1, P> P1 are quantities defining the curvature of the middle-surface after strain, viz. :—

Py — ¢, = sum of principal curvatures,
— (py q, + p,*) = measure of curvature ;

so that, if p,, p, be the principal radii of curvature after strain, the first term of the

above reduces to
14+26[/1 1\? 1+60 1
2 K3 oLy L+ .
SR Km + pg> 1+ 26 pxp.J

A similar expression to that given by KrrcaHOFF is obtained below in the case of the
shell initially curved ; but here the quantities q,, p,, p; are replaced by the difference of
their values in the strained and unstrained states, a result which might have been
anticipated from the remarks made by Kircuuorr (¢ Vorlesungen,’ p. 413) on the strain
of a rod initially curved, since the strain of an element is a linear function of these
quantities.

We wish to obtain equations of motion and boundary-conditions in terms of the
displacements of = point on the middle-surface of the shell, these being reckoned
parallel to the lines of curvature and perpendicular to the tangent plane at the point.
For this purpose it is necessary to express all the quantities which occur in the
potential-energy-function in terms of these displacements. As the geometrical theory
of the deformation of extensible surfaces appears not to have been hitherto made out,

* Called above ¢ Kircunorw's second theory.”
1 ¢ Vorlesungen,” p. 454.
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it was necessary to give the elements of such a theory for small deformations. The
expressions obtained for the principal radii of curvature show that the potential energy
due to bending is never the same quadratic function of the changes of principal
curvature as for a plane plate, except in the single case where the middle-surface is a
sphere and unstretched.

The general variational equation of motion is developed in the foym of surface and
line integrals, and the equations reduce to those of CLEBSCH * in the case of a plane
plate. The terms herein which depend on externally applied forces are obtained
directly, without the use of the arbitrary multipliers which render the calculations of
CLEBscH so tedious, and without the necessity which he finds for correcting an
“error” 1 as regards the distribution of force at the edge, thus avoiding some of the
criticisms of DE St. VENANT.}

We know that when a plane plate vibrates the transverse displacement is indepen-
dent of the displacements parallel to the plane of the plate ; and when the transverse
vibrations alone are taking place no line on the middle-surface is altered in length.
I discuss the question whether vibrations of the shell are possible in which this last
condition holds good, and show that it leads to three partial differential equations
giving the displacements as functions of the position of a point on the middle-surface,
and that these equations are not in general of a sufficiently high order to admit of
solutions which shall also satisfy the conditions which hold at a free edge. This
result is quite independent of the theory adopted, as the equations of inextensibility
are in the most general case a system of the third order, while the boundary-conditions
are four in number. It would, of course, be possible to find a system of forces applied
to the boundary which could artificially maintain this kind of vibration. It appears,
then, that the term of the potential energy which depends on the bending, which is
multiplied by A3, is small compared with the term depending on the stretching, which
is multiplied by % ; and, in order to obtain the limiting form of the theory when 4 =0,
we may form approximate equations of equilibrium and motion and boundary-con-
ditions by omitting the term in %% Having formed these equations, I proceed to
discuss the question whether the shell can execute vibrations in which there shall be
no tangential displacement, and it is shown that this requires both the principal
radii of curvature of the middle-surface to be constant at every point. The
frequencies of the purely radial vibrations of a sphere and an infinitely long circular
cylinder are given ; the displacement is a simple harmonic function of the time, and
is the same at all points of the sphere or cylinder. The formula for the frequency
admits of independent verification. Another general result deduced from the
approximate equations is that any shell whose middle-surface is a surface of revolution

* ¢ Blasticitdt,” pp. 306, 307; Equations (105), (106).

+ Ibid., p. 284. :

I Translation of Cresscm, p. 691. The method of CreBsch is styled *ohscure, indirecté, fort
compliquée.” )

MDCCCLXXXVIIL,—A. 38
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498 MR. A. E. H. LOVE ON THE SMALL FREE VIBRATIONS

can execute purely tangential vibrations such that every point moves perpendicularly
to the meridian through it, and the displacement is symmetrical about the axis of
revolution.

The special problem of the vibrations of a spherical shell has been discussed by
Lord Ravieien.* In his paper it is assumed that no line on the middle-surface is
altered in length; the boundary-conditions are not considered. The form of the
potential energy taken is a quadratic function of the changes of principal curvature or
the middle-surface, and this T have proved to be in this case the true form in Art. 7.
The assumption of inextensibility does in this case lead to expressions for the dis-
placements which cannot satisfy the boundary-conditions which hold at a free edge.

The method developed in this paper is applied to the problem, and the approximate
equations integrated. The solution comes out in tesseral harmonics with fractional
or imaginary indices, and the frequency is given by a transcendental equation; in
case the shell be hemispherical this equation is simplified, and to express the sym-
metrical vibrations only the ordinary zonal harmonics with real integral indices are
1equired, and the frequency equation can be solved.

As a further example of the application of the method to small vibrations I have
discussed the vibrations of a cylindrical shell. The displacement of a point on the
middle-surface is expressed by simple harmonic functions of the cylindrical coordinates
of the point. In the case of the symmetrical vibrations the frequency equation is
easily solved.

Aron has applied the method of CLEBscH to the problem of shells. In his memoirt
a point on the middle-surface of the shell is considered as defined by two parameters,
as in GAUsS’s theory of the curvature of surfaces ; the displacements are referred to an
arbitrary system of fixed axes; and the expressions found for them are the same as
those in Art. 4 of this paper, but the work contains a small error (see note to
Art. 4). Free use is made of arbitrary multipliers in order to obtain the equations
of equilibrium referred to the fixed axes. As these are in a very unmanageable shape,
a method of forming equations referred to moving axes is indicated ; the equations are
first obtained with reference to fixed axes, and it is proposed to transform these. The
transformation is not effected, but some reductions are made with a view to it
(pp- 169 et seq.). In these reductions all effects due to the change of direction of the
axes as we go from point to point on the middle-surface are neglected, so that the
results are erroneous (see note to Art. 6).

A theory of the vibrations of a shell whose middle-surface is a surface of revolution
has been given by MatHIEU.] The method is similar to that employed by Poissox
for the plate, viz., taking y = 0 for the middle-surface, all the quantities which occur

#* «“On the Infinitesimal Bending of Surfaces of Revolution,” ¢ London Math. Soc. Proc.,’ vol. 17, 1832.

4 “Das Gleichgewicht und die Bewegung einer unendlich diinnen beliebig gekriimmten elastischen
Schale.” ¢CrrLLE, Journ. Math.,” vol. 78, 1874, p. 138. »

1 “ Mémoire sur le Mouvement vibratoire des Cloches,” ¢ Journ. de I’Ecole Polytechn.,” cahier 51 (1833).
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are expanded in powers of y, and approximate equations taken. These equations are
included in those given in the present paper for shells whose middle-surface is any
whatever. MATHIEU gives for the special case some of the theorems on purely
normal and purely tangential vibrations here proved (see notes to Art. 13). The
solution for spherical shells is given in his paper. The introduction of the generalised
tesseral harmonic into this solution enables us to recognise that a certain type ot
vibration given by MATHIEU cannot exist (see note to Art. 18). The cobjections raised
by pE St. VENANT to PoIssoN’s method for plates seem to lie equally against its
extension to shells.

§ 8. Internal Strain in an Element of the Shell.

1. Suppose the lines of curvature on the middle-surface of the shell to be drawn ;
let these be the curves a = const., 8 = const. ; then any point on the middle-surface
is given by its &, B. At each intersection of a curve a« with a curve B suppose the
normal to the middle-surface drawn and lengths 4 marked off upon it inwards and
outwards from the surface, the loci of the extremities of these lines are two surfaces
parallel to the middle-surface. If we suppose the space between these surfaces filled
with isotropic elastic material we obtain the elastic solid shell which we wish to treat.

Let the middle-surface be covered with a network of the lines @ = const., 8 = const.
at distances from each other comparable with the thickness of the shell, and suppose
the normals drawn as above described at all the points of these curves. The shell
will thus be divided into a great number of elementary prisms ; and, according to
KircHHOFF'S general method, we must first discuss the equilibrium of one of these
elementary prisms.

Let a, B be the parameters of the centre P of one of these elementary prisms before
strain. Imagine three line-elements of the shell (1, 2, 8) to proceed from P, the
elements (1) and (2) being along the lines B, « through P, and (3) along the normal
at P to the middle-surface. Then after strain these lines are not in general co-
orthogonal, but by means of them we can construct a system of rectangular axes to
which we can refer points in the prism whose centre is P. Thus, P is to be the
origin, the axis of z is to lie along the line-element (1), and the plane of x, ¥ is to contain
the line-elements (1) and (2); then the line-element (2) will make an indefinitely
small angle with the axis y, and the line-element (3) will make an indefinitely small
angle with the axis z.

By means of the lines of curvature and the middle-surface we can construct a
system of orthogonal surfaces («, B, y), so that we may use the formule of orthogonal
coordinates with reference to a«, 8, 7.

We write for the distance between two near points—

L)+ G+ G )

38 2
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500 MR. A. E. H. LOVE ON THE SMALL FREE VIBRATIONS

2. The point P is defined before the strain by its «, B, and lies on a certain
surface y = 0 (the middle-surface). The prism whose centre is P is held in equi-
librium by the action of adjacent prisms, and its parts are not in the same configura-
tion as that in which they would be found if this prism were separated from the rest
of the shell and left to itself.™ Now, if this portion were isolated from the action of
neighbouring portions, any point of it (Q) would take a certain position defined by
the intersection of three surfaces of the family (e, B, y), which we may take to be
o+ p, B+ ¢, . Hence, when this prism is subject to the action of neighbouring
prisms the position of Q will be given with reference to the (x, y, z) axes at
P by p/hy 4+ vy, q/hy+ vy, 7/hg + wy, and after the strain is effected it will be given
by p/h + o, q/hy e v/hy + w’ referred to the axes of (z, v, z) defined in Art. 1.
The component displacements (u,, v;, w,) of Q are u’ — uy, v — vy, W — w,,.
~ Consider a system of rectangular axes fixed in space, and after strain let & 5 , be
the coordinates of P referred to this system, and let the directions of the (z, v, z) axes
he connected with those of the fixed (€, 5, {) axes by the scheme —

Then, after strain the coordinates of Q are

i (Eru)+ (L) (4w,
7+ m, <£ +u’> + m, <}%2 + d)-l—ms <£;—|—w’>, S oo L (D)
cones)enff e en(iee).

These expressions are functions of & 4 p, 8 4+ ¢, 7; and, hence, for each of them we
have 8/0x = 3/0p and 9/08 = 9/dq. In forming these differential coefficients it is
important to observe that u’, v, w' have no differential coefficients with respect to «, 8.
Throughout the space within which «/, v/, w’ exist, viz., the range of values of p, q, ,
which correspond to points within the elementary prism treated, o, 8 do not vary.
In his theory KircmHOFF first introduces the differential coefficients analogous to

# This remark was made by ARoN, in his memoir in Borcmarpr’s (CreLue’s) ¢ Journal,” vol. 78, p. 138.
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AND DEFORMATION OF A THIN ELASTIC SHELL. 501

ou'/oe . . ., and afterwards neglects them as small. So that the equations (6) and (7)
to be obtained below are unaffected by the modification of the theory here proposed.
Equating the differential coeflicients of (1) with respect to « and p, we get

(e B4 ) rnd ) 4]
o) mall ) i
() e (L) + e () g () + ey <1>
+m37"58;<2> ( +gu>+m2@+mn%%,
T+ )+ P(Er)+ T (b )+ n1p§(1> +may (i)
Hrerzeli) =) g g
and, similarly, by differentiating with respect to 8 and q.
3. Now, taking the set of three equations above written, multiply them by 7;, m,, n,

and add, then by [,, m,, n, and add, then by l5, mg, ng and add, and repeat the process
on the second set ; the six resulting equations may be written

e =t TG ) e () e
v=  anlr)aalee) ) oo
T AW N1
and
a= n () () eaG)]
}324-2;,:1;‘;;—24-%T'2<£+u'>—7bl;x'2<é+w'>+qé%<}%2> L. .9
R VAN R A 1)

In these oy, o, are the extensions of the line-elements (1), (2), and = is thé sine of
the angle the axis ¥ makes with the line-element (2) after strain, so that, if' (L,, My, N,)
be-the direction cosines of the line-element (2) after strain referred to the fixed axes

of (£, {),
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502 MR. A, E. H. LOVE ON THE SMALL FREE VIBRATIONS
) 0 0
11(1+°'1)=k13‘§, m1(1+‘71)=h152a ”1(1+°'1)=k1§§1
0 0 . 4
L2(1+0'2) zaf-}’ M2(1+0'2)=h23%, N2(1+°'2)=hzag i ( )
L=+ |, M, = m, + mw, N,=n, 4 n= J
Also
, ol 8 8 ol, 8
, ol 8 8 , . ol 0 8
)\lz_—hl(llgj—l' m3+ ng> )‘2=h'2(l15§+ my 879;3__‘_n1 aj;s> } (5)
, ol 0 0 ol ) 0 l
71=h1<lza‘;+ 7nl""‘ Ty nl) 72_h<]233+ 281214‘ ) nl)J

According to the general principles of KircHHOFF'S method, we may for a first
approximation omit the: u, v, w which occur in equations (2) and (3), thus
re-writing :—

a__“,_ﬁ Q 1 ™ Mo
a]’_hl_!_pa“(hl)—hleq—l-hlar
W _ 0 (1) _ #1 bl ‘
op qg;<7—7'—2>—h1h37‘+h12p & s e (8)
ow 0 (1) N /c'lb
5= raln) - irtine
o _w 0 (1 s Mo o)
o _h2+p8,8<h1>_ RN
W _ oy 0 (1 'y uf!
5 =t s~ Y ¢ )
o' _ 9 (1 £ Ky
81_7— 785(5;)—5; +h22qJ
Since we must have
o2 u,’ o) u,’
0pog v 090p .y’
we find
0 /1 ., 0 /1 ,
T'lz—hlhga"[g(}-bl-"), TQ:hlhza_a(;Lg)’ )\.2=~K,1. . . . (8)

Let K, A, T}, Ky, Ay, Ty be the values of &y, X'y, 74, &', Ng, 7', before strain, and
let «';, — K; = x;, 'y — A, = N\, 7, — T} = 7, and similarly for the others, then

Ki=—4A, K==\, 1n=1=0
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In (6) and (7) suppose v’ = uy, v = vy, w’ = w,; then
% = pé% <%> +q 8% (i)—}- %r, with five other equations ;

subtracting these from (6) and (7), we find

A A

OF

A

SOCIETY

oy _ o Mo o _ @ . p
op ko Myhy o "~ hy Ry’ '
on _ & o _ o _ K {
op Ty " 0 hy  hhy " o (9)
ow, K \ ow, K Ko l
» = TRl T P TRt
4. These are simply the conditions of continuity of the mass of the shell when
deformed. To obtain the forms of u,, v;, w, from them we shall have to introduce
stress-conditions. As the quantities in (9) are small, it will be sufficient to omit
products, and so form equations of equilibrium of the element referred to the
orthogonal coordinates (p, ¢, 7) as if we were referring to fixed axes at P,
If A, B, C be three functions of » to be determined, we have
p= A My — KL St g
¥ = i P gy T R P, O
— B, gy %
n= B byl P hohy 7+ Ty e -
w=C0—L L2150 [
Rt T 2h12p thzg /Llhgpq. J
'Hence, for the six components of strain, and for the cubical dilatation 8, -
_M — _ 9C b
e-—h3r+0-1, S= B + oy, g_h3ar,
oB 0A K A
J— iy —_ i —_— ) 1
_o&__..hgvar, _ b—'h38r’ , c= Hh3r+gzr,> . (10)
’ oC ' Ky — X
3=e+f+g=h3—;—|—0'1+0'2-——9' Ly, _
01 hyg J

OF

To determine A, B, C, we have the'stress-equations
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504 MR. A. E. H. LOVE ON THE SMALL FREE VIBRATIONS
o — 5 3
hgﬂm-ns+m@+@@@@+@§@m=m1
3 5 — 3
hla};(m) +h2871 (m —nd+ 2nf) + hy ‘8;(1206)= 0, \

0 0 ¢ ——
hlé—lo(vzb)+h2é~q-(na)+h35~r(m-—n8+2ng)=0, )

where m = k 4 § n, k being the modulus of compression, and » that of rigidity.
Hence,

0*A 0°B
ort 0, o 0,
and
0*C A K 0*C
m—m@w+‘%ﬂ oy Oy = 0
Thus,

If there be no surface-tractions on the surfaces initially parallel to the middle-
surface, viz., r = 4 hgh, then A = 0, and B = 0, and also at the surfaces

(m —n)d 4 2ng =0,
so that

O = — g+ oy Mm— N
! hy m+n’
Thus,

ty = My pr/hhy — ky qr/hohy + oy pfhy + w q/hy,
v = — 1y Pr/inhg — o qr/hohg + oy q/hy, .
wy = — 5 M ph? + &g *fhg? + 1y pg/hihy : o (11)

m —n
+

m + n

(% ’;2 — N 7?/h? — o) + oy r/hy).

Hence,

* Expressions equivalent to these have been given by Aron, but his work contains an error. His
equations (7, @), (7, b), p. 145, are strictly analogous to equations (6) and (7) above, but the terms in
) g-(%) . . . are all omitted. The test 8—92*«%/ = -QL%I is not applied; if it had been, there would

o\t )p Og v' ~ g Op o'
have resulted equations which in my notation are +';==0, v/, = 0, but the values of 7';, 7', are calculated
subsequently by the method of Art. 7, and are the same as those given in equations (8).
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3 Kol m—-n|——- 7
e——+rrl, /=—i+0'o, 9=m_+%['<z—7\1;3'—01+%],
a=0, b=0, c=za'-=—2K1;‘,
3
2n — 7
and the potential energy per unit volume is
il =) 34 2044 ) (0 £ P )
= nz® [K22+)\12+ 2K12+ ("2 - Xl)z] + ”((‘le‘l’ o’ +$a’) + m+a (0'1+ ) ]
+ a term in z,
where 2 is written for r/hs.
Multiplying this expression by dz, and integrating from A to — A, the term in z
disappears, and we find for the potential energy per unit area
W = §ub i 4 02+ 26 2 oy = 0
+277‘h|:0'12+0'22+'1§ m+%(0'1+0'2)2—l
or
W = $nkd m [(K2 - NP+ m (koM + K )] j|
m+ n
. (12)
+2hh[0’12+0'22+ lw2+m+n(0'1 0'2)2}
The term containing A% is the term depending on the bending, and the term con-
taining % is the term depending on the stretching of the middle-surface. We shall
hereafter denote by W,, W, the expressions
(kg — M) + IR (rhy + &)%),
"'12+ o’ + 3=+ m+n (‘71 + o)
§ 4. Geometrical Theory of Small Deformation of Extensible Surfaces.
5. We have now, by means of equations (4) and (5), to express the potential energy
in terms of the displacement of a point on the middle-surface.
Let u, v, w denote the displacements of the point P on the middle-surface, u being

MDCCCLXXXVIIL.—A. 3T
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506 MR. A. E. H. LOVE ON THE SMALL FREE VIBRATIONS

parallel to 8 = const., v to & = const., and w along the normal outwards and 1et o/ong
denote differentiation along the normal.
The square of the length of a lme joining two near pomts of the surface before

straln 1s
de dp\?
<}‘1> + <7;2>7

and the square of the length of the line joining the same two points after strain’is

deedB

oo +[fora el

neglecting small quantities of a higher order. But this same square of the new length
of the line is

-+ ) [+ 8 VT 4+ 108 + @ G [ 4+ 5(1)T 4+ (ap,

where 3 (1/h,), 8 (1/h,) are the increments of 1/h,, 1/h, produced by strain, so that

() =tz i)+ 1 Ao ()

and similarly for h,, also r
| dwm:mg%m+w%wm,
and so for d (hyv).
In the two expresqlons for the square of the new length of the line we may equate
coefficients  of (de}?, (dB), and {da dB), and omit powers of u, v, w, or their
differential coefficients above.the first ; thus

| ou 0 /1 w
Gl_kléz+k1hzv%<%;>+,z’
0 0 /1
o-z—hgagﬁ-hlhzua:(ﬁﬁ—kfi,». S (13)
hy O by O
"5:;‘:5/"3(71)"";1:3—(}%”):

where we have written

in accordance with Lam#'s result (‘Legons sur les Coordonnées Curvilignes,” p. 51),
viz., p;, py are the principal radii of curvature of the middle-surface before strain,
reckoned inwards. '
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6. To express ko, A}, k) in the same way, we suppose a system of fixed axes at P,
whose directions coincide with those of the (z, v, z) axes at P before strain. The
coordinates referred to P of a point near P on the deformed surface are

da + du — v 86, -+ w 80,,

85—
o = —I¢—+ dv — wdl, + u 36,
8 = dw — u 86, + v 80,,

where 86,, 86,, 80;, are the elementary rotations of the axes (x, y, z) about themselves,
when the origin is changed from a, 8 to « + 8o, B + 3B, viz. :—

. .
9, = =5 (1,) 8= =i, 8

2 /1
56, = 873<h_1>da= ]LIP;da N ¢ 7
803=hlai< >d/3 hzaﬁ< >da ]

Hence, by equations (4),
b= (o) [ G At g () + 2.
m1?‘ (1—oay) :hla h1k2u8?8 (71>:|
m=(1=o)[my -],

e 0 9 /1
Ly=(1—o0y) ]Lzaz Iy 205, \%)jl

My = (L — o) |1+ k%% + hy hzug <]L1>+?f’],
. 2

28:8 Pe
M, ©
Ny=(1—0y) Lhzag "‘ij';

substituting for o, o, and neglecting small quantities of the second order, we find

— ov 0 /1 ., Ow w )

h=1, m=hy = hhug(n), m=hg =",
ou 1 ow

Ly = hy 2% — Iy hy v <> M, =1, N _

2 28.8 1 /L2 2 2 L2aB pz, ( (15)
whence,
l—'—haw—{— ——-h-aw 2 =1

- laa mg = 288+p29 n3—., .

3T2
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These are the I;, m,, n, . . ., referred to axes at each point determined by three
certain line-elements at the point, it 8 denote the change in the value of these as we
go from any point P to a near point on the middle-surface, then referred to the fixed
axes at P, we have

81, =g%d“+ g—gd,@— m, 86, + n, 86,, and so on ;

= [y () {1 = o g ()} i (52 = 1)

~ B[z, () gt — o5 (3}
omy = da[ 2 [ 20— s 5 (D)} = 2 (1))

+aa [ fh 2= B () + i (32 = )40 2 1))
om=ae[f G =)=

0 ow w 1 ov 0 /1 .
+ gl g5 {5 — o} = {in = b5 ()} )

in the same way

so that

1 aw 0 ou 0 (1
+dB %2—;2@%83 >+kla < >{hza,e hlhz”&@)}]’
o ow 1], o o 2 (2
N, =[S {1 22— 2] LG22 (D]
ow v 1
+dB [53{ 258 pg} - thz].

 'We may form the «’y, N}, ', from these, for m,z, nyw are small quantities of the

second order, and /; a(;lm) laaggy)

order, using equations (5) we obtain

are also of the second order; hence, to the first
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ow 0 oin v N
= = (5 = )i >+a«<zas o)

=i = e ()} ]
=R} - ) -]
o=t~ (5= )= hg (D) +as(h5 =)~ 2]
Nz=—kz[—<"/zg§ :) laa< >+8@‘(1%:_}%>

1 [, ov o /1\]
* =il = rag i)} )
The relation Ny = — «’; reduces to

e R R Bt 1) S

and each of these expressions vanishes (LaME, p. 80); thus, this condition is fulfilled
identically.* Using these relations, we find

- (16)

0w oh, Ow Ohy Ow  hy Ov  hy Ou ‘ ' 1
=g et g, T 8 5 p e pr 38

w 0 Vl v 0 /1
{5 (i) + 5 )
oh, Ow ow 0O b, Ou
<]ll>

2
“"—”’la""‘kla T Mg 58 o Ba

- (18)

0/1 1 0/1
~ g, () = 5 )
oh, Ow o, Ow 0 Ty Ov
28,82+h28,88,8+h1/28x8a<> 0, 08

0 10
=g () =i 35 3):

7. The quantities defined by equations (5) have been calculated directly ; we wish
to obtain an interpretation in terms of quantities defining the curvature of the
middle-surface after strain.

* This may be taken as a verification in some degree of the preceding work. In endeavouring to
form equations referred to the above set of moving axes, AroN neglects the 86, 86,, 05 and deduces
values of Ny, «'; (my notation), which do not satisfy the relation Ny + «'; =0 (see the memoir above
quoted, pp. 169 et seq.). In consequence, he is obliged to make an assumption that 0 (vhy=1) [ Ox is a small
quantity of the second order.

1f the relations (17) had not been known, the theory of deformation would prove them.
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510 MR. A. B. H. LOVE ON THE SMALL FREE VIBRATIONS

First,'suppose we are dealing with an inextensible surface, then

0 0 0
'H:hla%’f, mlzhléZ’ nl:hlégy
: 0 0 0

y = hz%’ m2=hga%, nz=/725§-

By equations (5), since /,l; 4+ mymy + nng =0, and Ll + mgmg + ngng = 0,

;o 0(ng) 6 | 0(Lk) o' , 9 (&) ¢
— M= ]ngh2 [8 (2f3) Ox? + 0 (28) 0a? + 0 («8) aaz:]' ’
;o o(nt) 0% 08 o(kn) ¢
Ky = Ry [a («B) =08 T 00p) g T 9B o 83} ’

v 707 0[0(b BE (8 Py | (Em) Pt
“*mhdﬁwwmﬂ+wmmmﬁ+awww4’
, d(nt) PE |, O(LE) O |, O (En) aﬂc]
—_ g [ZA\NS) Y e i/} Y5 .
Ko = Inh, [8<a3>8 2t o) e T 98 0B

Hence, taking the notation of SALMON'S ¢ Geometry of Three Dimensions,” chapter 12,

section 4, we have

1 1 1
E=p F=0, G=g;

3 —— b

hyhg
hi*hlF = k', hih® G = iy, hlhy B = — N

‘and the equation for the principal radii of curvature is*

N N LS
<},112 P hlz) <— hy p— X - Ity p’=0,

so that, if p’}, p’y be the roots of this equation,

1 1
Ko —Ny=— S —

P11 P
WoNi+ 2= — 1
2N 1 A

Also

1 1 Ky | Ny .

PrPs Py P P2

* SALMON, p. 346. I have changed the sign of p so that the roots shall be the p; and py of Art. 5.
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AND DEFORMATION OF A THIN ELASTIC SHELL. 511
In the case of the sphere, this is

1 1 1/1 1 . .
—_— = - <—, —-,-> where « is the radius
Pi1pe & t\Py T P2 ’ ’

5oL

or

A A

SOCIETY

OF

A

SOCIETY

OF

for any other inextensible surface this will not be the case.
Now, suppose the surface extensible, and consider («, 8) as two parameters defining
a point on the deformed surface ; in this view they will not be orthogonal parameters,
and we find
1 0F 0F | Ondy , 0L OL
et to) =g st s tam=
or
¥F= ﬁ to the first order ;
S0
— 1 =29 — 1 =20
- a7 G = h? "
Again,
[ — Iy af
! 1+ Ox
with similar expressions for m,, n,.
To find «’y, N}, «’; from the definitions in equations (5), we notice that the termns in
0 < hy 0 < hy
Ou 1+o*1>’ 3,8 1+a‘1>
will always be multiplied by terms of the form
0
(E —|» mg 8 T4 g E)
Now )
— — — . 70_1__ N ﬁ Jd(n8)
ly = (mny — myny) = mNy —n M, = BN g yar g
and similarly for mg, ny; thus, the differential coeflicients of h,/(1 4 o), hy/(1 + o3)
will be multiplied by factors which vanish identically, viz., they are of the form
QEI(nE) | OnO(LE) | 0L O (Em)
Ox 0(2) O (28) = 0x 0 (aB)’
Hence,
VI O S VRS =k A+ ay)n,
B= - by 7 F Ay G'= hjhy
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The equation for the radii of curvature being

(Ep +EV)(G'p + GV) — (F'p + FV)2 =0,

where
V=, EG-F)= lzo=o nearly,
hlh2
we find that to the first order
1 !
~1,-= N (14 oy + 40y) = ~+i’-2+——4”—1 + N,
P1 P P1
1 0'1 + 4:0'2 :
';‘=——K2(1+0'1+40'2):_+ — Ky .
P2 P2

We have already found expressions for «,, A, «; in terms of the displacements;
hence, we have found expressions for the new principal curvatures and the position of
the new principal planes, in terms of the displacements, for the position of these
planes depends only on F or on «;; we have also found the interpretation of the
K Aj, K in terms of the quantities defining the curvature and the extension.

In the case of an inextensible sphere, the potential energy due to bending is

g [P G) o G e )e )]

For any other surface, whether extensible or not, this will not be the case. If the
middle-surface were unextended, the above would be right to small quantities of the
first order, but we always require the potential energy correct to small quantltles of
the second order.

§ 3. Lquations of Motion and Boundary-Conditions.

8. Following KircHHOFF'S method, we are going to apply the principle of virtual
work to obtain the differential equations of motion and equilibrium, and the boundary-
conditions.

Let X,, Y, Z, be the components of the bodily force per unit mass parallel to. the,
lines of curvature B8 = const., & = const., and perpendicular to the tangent plane to
the middle-surface, acting at any point Q of the shell. Let QP be perpendicular to
the middle-surface before strain, and let Iy, mg, 75 be the direction cosines of QP after
strain referred to axes at P, as in Artt. 1, 6; if w, v, w be the displacements:of P,
and z the distance PQ, then, when a small variation in the configuration is made, the
displacements of Q will be found from equations (1), dropping the p, g, to be
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du + 2 3,
dv + z dmy
dw + z on,.

Let A, B, C, be the components of the system of forces per unit area applied to
the edge of the shell, and holding it in its actual configuration. The systems of
forces X, Y,, Z, acting at all points of a line through P perpendicular to the middle-
surface, and the similar (A, B,, C,) system, will each reduce to a resultant force and

couple. »
The resultant of the X,, Y;, Z, system is a force at P whose components are

X = J'_,LXI dz, Y = Lh Y,d2, Z= J_;, Z, dz per unit area,

and a couple whose components are
4
—_ —h

.L = — jﬁ hledz, M=+ J' X,zdz, 0 per unit area.

~ The resultant of the A,, B,, C, system is a force at the point P in which the
middle-surface cuts the edge, whose components are

% ' 3 %
A= I . A dz, B= I hBl dz, C= [ . C,dz per unit length of the curve in
which the middle-surface cuts the edge, and a couple whose components are
b | 7
U=— [ , Bizdy, V=4 J . Ayzdz, 0 per unit length of the same curve.

The general variational equation of motion is

0= — m[xl(su+zszg) + Y, (80 + 2 8my) + Zy (Sw + 2 Sng)]dS dz
— [ [ LA (30 + 2 815) -+ B, (80 + 2 5my) + C, (3w + 2 0] ds e

+ gnhsm"_'in“swlas + 2nk”8W2dS
+'pm[<g%‘+ z%i-?) (Su + 2 81,) + @;q. zﬁg—;”g> (S0 + 2 5my)

0°ng

2 ‘
+ (58 4+ 5 ) (Sw+2 3n3)] dS dz,

MDCCCLXXXVIII,—A., 3 U
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514 MR. A. E. H, LOVE ON THE SMALL FREE VIBRATIONS

where dS is an element of area of the middle-surface and ds an element of arc of the
edge.

Observing that by equations (15) dng = 0, and integrating with respect to z from %
to — h, we get the equation

—H(XSu+Y8v+Z8w)dS—”(M8l3——LSmg)dS

— [(A8u+ B 8w+ CBw)ds — [(V 8, — U dmy) ds

+ gl " [ W, dS + 2t [ 5W, a8

e v, @ o | O
+ zpk”(at—;’au + 280+ ﬁ”sw)ds +%ph3_([(\67;813 + 7Z‘%‘mg)ozs =0, (19)

which contains in itself all the equations and conditions of the problem.

All the double integrals which occur in this equation can be expressed, partly as
surface-integrals over the middle-surface, and partly as line-integrals round the edge,
by means of the theorem,

”(dx'l'd3>d adf = f(XAh2+thl)ds, o (20

where the first integration extends to all values of (e, 8) which correspond to points
on a surface having s for an edge, and N, u are the cosines of the angles which the
normal to the edge drawn on the surface and produced outwards makes with the
directions of the lines 8 = const., &« = const. at the edge.

To prove this theorem,* let a line of curvature & = const. meet the edge in an even
number of points, and let X, X,, . . . be the values of X at these points, then

fX)xhzds=I[(X2—Xl)+...]hgq}%:f{[Xz—Xl]—k. 2 dB= H da dB;
SO .

[ ds = ”aydadﬁ

The partial integrations will be effected by means of the relations

Po6  FX, | 0 /v08 OX |
T L) |

2 56 x2i 2 (9% _iX l
2Xa_a_é—“2a 868¢+8< B ¢)+aﬁ< aas‘/’)’ - (@)
35

= e 5 (X84). J

* Of. MaxwrLy, ‘ Electricity and Magnetism,” Art. 21. This theorem is otherwise proved by ARox.
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In evaluating the line-integrals we shall use the formule—

o 5 5 5

h 5 = "as‘”au e l“a + A 55 I>> -
2 o a S

h 55 = na;+>~a;, 5 = ) 2 +h2naﬁ Jl

in which dv is the element of the normal to the edge drawn as above stated.
9. From equations (15) we have—

95
By = — I Sy + O
Pl (29)
Sine = — h 88w+8v

so that

o -saegn () -n {5

= || [h o Su — }I’I 2P2 {g— <—-> ( >} Sw:} do df

—-[%<M8 > 8,8</z1 )J dadf
e,

_ f { M s,
3 Unhgpy hlhepz

FOp=MNswds . . ... (29)
Again,

[ (V8t,—Usmyas = [[v (- k§§@+%>—U< hﬁ%+ >)|as
=~{p13u—;)3 -V( 00w _ a3“’>+U< 83w+>\@—33‘—’>}ds
=.':pISu—~8v—~()\U+,LV)8w—()\V rU) 385 } C . (29)

by integration by parts.
Again,

[[sw,as
=[]z =220 o 4 [ =2 ) on 2

m 4+ n da dB
T2 ”"1 Sk, hyhy

3 U2
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516 MR. A. E. H. LOVE ON THE SMALL FREE VIBRATIONS
Thus,
[[sw,as
& (4 - Z [
=Hdadﬁaw[8——62 ]—Zf‘<2l<2—mm ”xl>} 2 { : %)}
0 (10 m—n 0 [10h m—n
~as (s e =0 " *1)%5’%75*‘(” ="t}
0 0 /1 . m — 0 m—mn -
= 2 s () (e =" M)} g P () (8 = 5w}

m+ n [ O 0 [x, Ok 8 e, Oy,
+ot e — () - (hlafa’)}]

”dadﬁSuLiéa(h)(%z ) 1158 { (2)\ —
- (hlp) s i)}
+J’Jd“d68”[§;a%<%>( st 22 (-]

m {ai (kng) T 2 824 <1>} }

- 0o 0 [y T
-+ Ip,h ds[ (2;{2 Z’ijm_,ﬂ )\1) aﬁw B { <2K2 mm z )\1)} dw

18h _m=mn 0/1 m—n
+ 08 ) 2 oh,
+’”’bm %{Kl a:; ICIS + k a Klgw}]

h —n 08w 0 [k m — \
+‘()xh2ds[:—-}:;<2)\l—%~x2)§ —&{é(le— — }Sw
1
7

Q)52

o

m

m+n 08w 8/c1 28_70_1
+ { 13 et aB"IS“’H

m
1 - 1 m—n
+ Ids[—— phy S Eﬁ;(zkz - ”xl> + Mg 81 (zml - Kzﬂ

[dsamre [pk&c——-l-)\h&)h] o ()
2Ps2 ;
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Using (22), we find for the line-integral part,
[dsaaw [,L2<2K2 —mw‘;"’)\]> - <2x1 — ’%}—’9@) +aptt KJ
+ [as T “{mxﬁ M)+ (0 = )} |
+ [ds Sw,uhl[ 58 {ﬁ (2 Ky — Z'im;"—‘x >} +h127; <2K2 m;—@'xl)
s o - )

<) +

+ [ ds 8w M, [5‘3— th <2x1 - ””—;ﬁ@)} 7% -aa]’l <2x1 o K2>
BAs
+

+hg (i) (= )+ 2 = G+ )
+_{0l88upll‘_)\<2)\l— W—%n ) 2™ ;ucl:l

1 + |
+[d38v;2[—p<2xz—m )\1>—2%ﬁ>m1] Y

where, by integration by parts, the second term becomes

IdsS m+n8 {)‘I"(K2+)‘1)+()‘2—I’*2)K1} .

Again,
[[swoas=[[2 (7, ot i en) 80550
(o (e i) ([0 5

= fandssa] =2 (1) (i 255 0)
| "‘Zau( ><m2fn L’ZIZ%)—’%%(%)]
+ [[anagso] =2 2I(2) (20 0+ 252 0))

+ 255 (1) i o+ h o)) =l ()]

[ 2 2m m—mn \ 2
+.[dad3810[< 1+m+n >7‘kepl+<m+”02+m+”01/h1thz]
+.ds)\k 8u}72< 2m _0-1+m o-2>+pk 8@—( 2:7_@% +Z;:01>
+ ds()\h28v]—{+ph18uz—;—>, R ()

* ? 1
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518 MR. A. E. H. LOVE ON THE SMALL FREE VIBRATIONS

where the line-integral part is

[ s [m( o+l >+ pm‘} su+ | ds[?p(m2fna'2+;7:1201>+7\w] S0,

Again,

0% 0 0
[j(a—;'sz3+—a-’t—“;—3sm3+ 2 8. >dS
[ 1 Jw 1 1 ow 1
o j.<_ h2P18“8t2+ Ty b py? aﬁ>8 dad,8-|—”’ <— Iy py OB O + Iy hy pg? aﬁ>8 dox 08
([0 by Pw 1 o hy Ow 1 %
+.f[2<_7&1‘aaate+ T, a¢2>+a,e< nagae T aﬁﬂgwd“dﬁ

r 1 Pw 1 0% '
_.[x< 18aat2+p at2>+ﬂ< b ggan + aﬂ)JSwds. L (29)

10. Collecting the terms, we have the differential equations of motion
_X M 2ph O o g3 1 w1 Fw
[ by pylnhy + Ty 8152] + 3ok <h1hef?12 o hypy O at2>
_a,73 ™ [1 0
0 [ e ) (2 = )
1 0 m—mn m+n [0 k, O [1\]
oA = >} 2 i) + st
.+Pla“{ < m 2 0B \Iypy --l-i"laﬁ2 )
0 (/1 2m
o =2 {G) FnetiT i)

+ 2 Ba<1><m2—lw—baz 2+m+n >_ho?8<7?2>

_ Y, L 2pl O o gaf 1 _ow 1 Pw

[ hh + 1 + Tnhy, OF ] +pl (7”17‘21722 o hypy OB 8t2>
1 0

7

138 ) (0= )

e =t )+ R sG]
o[ =2 {7 (o 2+m+% 7))

o) et iTie) = ha(E)l=0 6

_]._.« .
=0 . (30)

pal
m
m +

- 2
+ & al?
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28\ DL\ | 20
[“ Inhy ~ Oa <h> HEE <k> + iy 06
0/ 1 % B Ow o/1 o h, OPw
2 3 (_—-—_ 77 M el = 22 _ T2 27
+ 3 ph {aa< hop, OF iy Oa at*"‘> + 0 <k1p2 or I aﬁat2>}
4,73 M [0 [h _m=-n _aiiﬁ‘_m_—ﬂ }
+ sk m + n[a/32 {kl <2K2 m )\1>} Oct? {hz 2N m 2
0 [1 Oh, m—n o [1 oh m—n
~as s e =" g e (=0 )
0 0 /1 m-—n | 0 0 /1 m-—n
= et ) (e =) g g (1) (0= 0" )
4gmEn {aml 0 </c1 8h> ) <ﬁ gh_)H
m |0x0B OB \hy Ox Oz \ I, O3

R e ET

1\ + n m+n m+n,

The first terms in these equations reduce to those in CLEBSCH'S equations
(¢ Elasticitit, pp. 306-307) in case the shell becomes a plane plate.

The second terms (in ph?) arise from the “rotatory inertia.”
- The third terms (in A%n) arise from the term W, in the potential energy, and depend
on the bending ; the fourth terms (in 2nh) arise from the term W, and depend on the
stretching. :

'11. The boundary-conditions are

_ v a. 73 m 1 m - m+ n A
<A+P1>+ 3nkm+npl{:)\<2}\l_ - K2>——2 p [LKI}
2m I )
+2nh[2>\<m+n0'1+m+no‘2>+[xm] 0,
- (33)

-—B+ +4 " l[—p(ZKg-vm;n)\>-—-2—m+7—b7m1}

m+np2

9
+ 2721&[:2,;, <m j—ln% -}-Z ﬂ‘rl> + )\m'l = 0.

P
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520 MR. A. BE. H. LOVE ON THE SMALL FREE VIBRATIONS
0 . 03w 1 0% Pw 1 0%
(bL = AM) — O+ 5 (U + V) + %‘”h?'[ <hla i aﬂ) T < 238F T py 8::2)]
[ 0 [hy m—n 1 Bh m— n

0 _m—n \T

B( >< w

o (I m — ) m—n .

-+ )\hz[ {h_ <2)\ - >} i 2\, — >
A
+ b, > <2K2 — xl)
D‘F« (kg + M) + (M — 1) 1]

SR SRS

m-+n

o
i

m 4+ n 0

=0, (34)

— U4 gl " n[,ﬁ (2= "0 ) =020, ="
 The first terms in each of these equations are the same as those in CrLEBscH’S
equations, pp. 306, 307,

The couple — [AU + wV]is that called by pE St. VENANT the moment of torsion ;
the couple NV — U is that called by him the moment of flexure, and their axes are
the normal and tangent to the edge respectively. The former of these may be con-
sidered as arising from a distribution of force in lines normal to the middle-surface
and in the edge; the difference of the forces in consecutive elements gives rise to a
resultant force normal to the middle-surface which coalesces with C. This is the
explanation of the union of two of the boundary-conditions given by Poissox in one.

We are going to apply the equations just developed to determine the small free
vibrations of the shell. The terms depending on the rotatory inertia will be
neglected.

K2>+2>\,u }:0. (35) |

§ 6. Possibility of Certain Modes of Vibration.

12. Now let us suppose, if possible, that the shell vibrates in such a manner that
no line on the middle-surface is altered in length. This requires that o, oy, = be all
zero. Thus, from equations (13) we derive '

1 w
+hh2@ B( >+—_0,

0 /1 w
286—'-})/}&2% <72>—|—;2=0,
haﬁ(h u) + /a—a(kzv) = 0.


http://rsta.royalsocietypublishing.org/

N

a
L
/%
AL B

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

%

S

JA \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

AND DEFORMATION OF A THIN ELASTIC SHELL. 521

These are three partial differential equations to determine the forms of u, v, w; and,
if either u and w or v and w be eliminated, they will in general lead to an equation
of the third order to determine v or . When one of these is determined, the rest
are known. But at the edge we have to satisfy four boundary-conditions, and this
will not be generally possible with solutions of a system of equations such as the
above.

13. Since o, 0y, @ may not in general be regarded as of a higher order of small
quantities than ky, ), Ky, it follows that the term in W, in the potential energy
which contains A as a factor is very great compared with the term in W, which
contains %%, and we may form approximate equations of vibration and boundary-
conditions by omitting the latter term. '

The equations of motion thus formed are—-

o1/ 2m m—n 1
8t2+hh [ a—a{lz;<m+no-l+m+no"’“>}

1 2m m—n
e - (30)
1 2m m—n 0 /w)\
+zaﬂ</z)(m+n"1+r+n°z>-’%a:&‘;ﬂ’
0w w1l [/ 2m 1 o2m m—n \|
0= 8t2+2;[;);<m+n 1+m+n >+/—3;<m+no-2+m+no-1>_l' J

And the boundary-conditions are—

2m
2)\<m+n 1+m+no-2>+’bw_0 ]

2m
2’L<m+n 2-|—m+%0'1>—|-)\m'—0 j

(1.) Let us examine the possibility* of purely normal vibrations.
Since u = 0, v = 0, the equations of motion become simply

(37)

Pw , ,m_2m
o? pm+n

(2_}_ -+ w=0, . . . . . (38)

P1P2)

where o = (m — n) /2m is the ratio of linear lateral contraction to linear longitudinal
extension of the material of the shell.

* MaTHIEU convinces himself of the impossibility by general reasoning.
MDCCCLXXXVIIL—A., 3 x
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522 MR. A. E. H. LOVE ON THE SMALL FREE VIBRATIONS

In order that all parts of the system may be in the same phase, it is necessary that
1/p® 4+ 1/p + 20/p,p, = const. all over the surface.

Again, in the u, v equations we must pick out the terms containing w, and, observing
that w is independent of «, 8, we may write them—

~alnG o ra o) =0
a?e{l<;2+,%>}+a%<ili;><%§+§;>= )

1 1\0/1 10/1 o\ )
=== LEG )
( ?) Py pa/ Oa\ly hy O\ py + P2

and, r

1 1\ o /1 1 0/1 c
(1_0-) Pl_P2>a:8<h'1>_h aB<P2+;1>' J

(=)

Thus,

But, by equations (17),

Substitut ing, we get

)

Lo (99)
10/1 1\ _ |
/laB<P1+P2>-— J

So that 1/p, + 1/p, = const. all over the surface.

The two conditions of possibility of normal vibrations show that the middle-surface
must have both its principal radii of curvature constant at every point. These
conditions are satisfied by the sphere, the circular cylinder, and the plane.

Again, if the surface be bounded by an edge, we have, since w=0, M(1/p; 4 o/py)=0,
p(1/ps+ o/p) = 0; these can coexist for all values of A, u if ¢>—1=0, and
1/py = = 1/p,.

To make 7 positive, or the material resist distortion, we must have 4 — o positive,
8o that o cannot be = 1; the equation ¢ = — 1 makes n = 3m = 3k + n, so that
k=0 or the material of the shell would offer no resistance to compression ; thus, the
equations above written cannot coexist for all values of \, p, and hence one of the two
\, p must be zero, and one of the two equations 1/p, + o/p, = 0 and 1/p, + o/p; =0,
must hold at the edge. These conditions cannot be satisfied on a sphere or cylinder.
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The complete spherical shell may execute purely radial vibrations, and the frequency

is
1 N/ A+o)n
1=0)a%p’
where a is the radius.®

The indefinitely long circular cylinder may also execute purely radial vibrations
with a frequency
1 2n
2 ’\/ 1—o)ap’
a being the radius.
Observing that the more accurate equations of motion and boundary-conditions,
which contain the terms in A%, will in all such terms have only differential coefficients
of w with respect to a or B, the above theory is seen to hold also if these more

accurate equations be considered.
(2.) Again, consider the possibility t of purely tangential vibrations, the edge being

a line of curvature.

Since w = 0, the third of equations (36) gives

(o1 + oay)/py + (o3 + oo)/py =0

at all points of the surface.
- Now, the boundary-conditions at & = const. are

o, + oo, =0,
= =0,

and with two functions u, v it will not generally be possible to satisfy these con-
ditions.

If, however, the surface be of revolution, and B be the longitude, then
0h,1/0B = 0, and all the conditions can be satisfied by taking

(1) vw=0,
@) & j/ at all points of the surface,
\ 8,8

®3) 3 (szv) = 0 at the edge;

* [In the paper as read, this result was verified by reference to a question set in the Mathematical
Tripos, part III., 1885. It has since been pointed out to me that it coincides with the formula given by
Lawms in ¢ London Math. Soc. Proc.,” vol. 14, p. 50.—July, 1888.]

+ Marmiev deduced the possibility of some purely tangential vibrations from his differential equations.

3 X 2
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524 MR. A. E. H. LOVE ON THE SMALL FREE VIBRATIONS

and the equation of motion is

0% of[h 0

Hence a general theorem :—For any surface of revolution there exists a system of
symmetrical vibrations, in which every element moves perpendicular to the meridian
plane through a distance which is the same for all points on a parallel of latitude, and
the frequency of such vibrations depends only on the rigidity of the material, while
the ratios of the intervals are independent of the material. These are the only
purely tangential vibrations of which the shell is capable.

14. Let us examine more minutely the question whether a spherical shell can
vibrate in such a manner that no line on the middle-surface is altered in length.

Taking a = 6, 8 = ¢, the colatitude and longitude of a point on the middle-surface,
and a the radius, b, = 1/a, hy = 1/(a sin 0), thus

0“’1ng+7’”’ )

a02=@o+ucot9+£l~e%a Eoo oo (41)
0/ w . o/ v \.

aw—§$<m>+31naa—6<m>’u

1 o ow 1 ov )
2, — ——— — e
@K = 5in?9 0g? + cotf 36 sind 0 " cot, 6,
Pw O
— 2\, = e = 50 > .. (42)
1w cosf ow v 1 ou
2. — - ow __ov__ o
@ Gin 0 06 Op sin?@ 0p 00 sinf Op Fveot 6. B
Suppose oy, oy, = all zero, then
o
Y= T’

and

: 9?1 _fL>_i ”>
Sm’aagmo ‘a¢@me’
. o/ v 0/ u
st egéﬁsin 9> - %<sin 9).

These are the conditions given by Lord RaviricH, and they show that u cosec 6 and
v cosec @ are conjugate solutions of the equation
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°’X . 02 .
5&-]—(81110@)}(—0, e e e e e e . (43)
and w is given by the equation
| _
T

Substituting from o, oy, = = 0, we find

1w
2
@Ky = sin?0 a¢2+ t980+w

a/fz)\lz sﬁ—‘_a_é,
o, — O 1 &u)
=" 5p\sin 0 ‘aea¢>

u

oNe/ w
Eye) ¢2 — gin @ <s1n 0 5 6’> <sin 0> .

1 w_ 1 Pu 1 0 0 0 1
sin?0 9¢* sin®0 000¢>  sin’ 6 00 [sm <sm > <s1n 6> J
1 09[4, 0Pu . g
=333 a6[s1n 0 55 —sinb coq0§§+ u]

_8€3+ t0602+280

Now,

Thus,

Hel’lce, Ky = Al'%
The boundary-conditions arising from the terms in 8u, dv in Art, 11 are now
2AM(1—0)ky—2u(l — )k, =0,
—2p(l—0o)ky—2M(1 — o) Ky = 0
since \? + u2 =1, and & — o is positive, the only way of satisfying these equations

is to take k; = 0, k, = 0 at the edge.
Now,

Bu 0/ 1 o
9 e g2, _ TH  OU 9, . __9of L Oouw
N = 0 = 5+ 5 wy = ae<sineaea¢>'

And, as shown by Lord RAYLEIGH,

s$=o0 r —sinsd =
U= in 6 LA,, tan® Q]
8=2 2 €08 s
$=a 9 cos sp
v= 3 mﬁ[Astan"—] Lo oo (49)
§=2 2 sin sp
g=o0 G sin s
w= 3 (s—l—cosﬁ)[A&tan“J :
§=2 2 —cos sp _J

#* This might have been written down at once by the aid of Gauss’s deformation theorem.
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From (43)

0 o/ u 1 ou
sin 0 =, 3 [sm 0 3 <sin 0)] + 507 3 =03

put
: N
sin 6 tan 5 = Yo
then
aPu, _ t 9 T 2 Gosec® 0 20
qe T ro=cot0 -2+ u, (s* cosec® § — cot? 0),
and
duw s sec s
270 — Z —
[w—cotﬁuo-l—zuo a_uu(cot9+ 0>,
tan 2‘
so that
d*u, s+ cos @
g T = %S Ty
R u(, duo 2scos 1~ 2cos®d s* + scos 6 | s
+ Yo [— sin’@  sind sin®d ] + sinfg 0 <00t 0+ sin 0>
=1
= u,S m ;
hence, ,
s=o 0 —sin sp
Pk, = [(33 — 5) A, tan’  cosec? 0]
- 8§=2 2 €OS 3P
Again,
d/ 1 du, _ d Coéﬂ—i—su
d6 \sin 6 d6 do| sin*6 0
__ (cos 0 + s)? 2s cos 0 2 cos? 9 _ ~1
s 0 st + sin 9 R sind 6 - uo sin® 0 °
hence,

= 9 c08 s
e, = 2 (33 — s) A, tan® 5 cosec? §
1= 2 sin sgb,

!I

so that x, and #, cannot both vanish all along any curve drawn on the middle-surface,
unless the A vanish, which gives no displacement. '

We have shown explicitly in this particular case that the assumption that no line
on the middle-surface is altered in length does lead to expressions for the displace-
ments which cannot satisfy the boundary-conditions which hold at a free edge.
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§7. Vibrations of Spherical Shell.

15. Let us now apply the equations of Art. (18) to the discussion of the vibrations of
a spherical shell ; we have

a’p 08&{_ 0/ 2m o , m—na, A
- m+nh m + n h,

o 80
o /1\/ 2m m— '
28—0<_><m+n02+m+n )+hlaq§<hz>’

a*p . a&_ @_ 2m o, m—no,
n81n08t2—28¢<m——?n701 m—rnh) | r (45)
0 /1 2m m—n 0 /o
259;(;;)(%% Nt >+hza?<;7§>’
atp . 0w . a3m—n
781n58v2=—200s1n0m+n (o1 + o) - )

In these we are to substitute for %, h, their values
hy=1/a,  hy=1/(a sin 0)

and for oy, oy, = their values from

060'1=gg+’w
aoy = w + u cot 0 + Illeg;;

ais <s1n e) + sin 6 aae ( >

Let us tuke w, v, w as functions of ¢ to be proportiohal to e?!, then the period is
2w/p ; also take p®a®p = nk?, where « is a number, then we have the three equations—

m

2usm0—|—2 e, aae[snﬁ<aa+w>:]+2m—_; aE;<ws1n€+ucos0+a¢>

-2 — cosﬂ(w-{—ucotﬂ—l— 192:) 22:20030@5"'”)
1 u o o
+ 5 8¢2+805¢> cot@a:; 0, . . . . . . . . . . .. (46)
1 0 0 0
%sma+2m+nd¢(w+ucot0+ ea;>+2m+:,a¢< +§Z—)
+ 3020 ae 895 +-co 9295 + sin 0392 + cos 9(% g (008’ 0 —sin®0) =0, (47)
1
x2w=2m+n<ae+uct0+ 08¢+2w> o cow .. (48)
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The first two of these are—

ow 3m —n Sm — 5
2’“"‘(1"‘ m+n><802+ Ot'989>+2ae "t —<1+ m+ >“°°t é

3m —n Sm—mn\cosd w  Bm—n 1 W 1 %
v+<1_m+n>u—<2+7/'b+7z>sin2€8$+m—f—n sin6896¢+sin208‘95—2—07 (49)

2 3m—now , cosfou 8m —n
%, _ 2 o
Kl+<892+00t0 >+fv(2 c0sec 0)+sm0 m+ n 8¢+s111298¢<2+m+n>

1 ( +3m——n v 3m—n 1 Ou
sin® 6\ m+n)op* ' m+n sind 00 op

+ = 0. T (50)

Substituting from (48), these are—

Pu ou 9 1 u ;cosﬂav_ &% Ow .
8—9;-}- t0——|—(2—|—;<—coseo 0)u+s1n908¢2 sm‘208¢+289 0, . (51)

1 0  2cosfou K ow
-— 2 ek =
892—‘— t689+(2+x cosec” 0) v + 1n208¢2+ sin?® 6 6¢+2s11108¢ 0, (52)

and, writing

e q 3m — 4 __Sm——n,
K2<K 4m+n>—m+n e e e e (53)
(48) becomes

P ou 1 ow

5 w= <80+ cot 0 + m60¢> R ( 2)

Substicucing for w, we find

0% ou 1 *u
(1+¢) <a—672~+ cot 055> + 098
cos O ov ¢ o

4 [+ 2 — (1 + ¢) cosec® O] u — (2 + )sm2€8¢+sm98€8¢—0 (55)

1+c( o

802 + wae + $in? 0 o¢p*

6 o 0
+ [¥* + 2 — cosec? 0] v + (2+)§1‘f298f;+51f10893¢ 0. (56)

Since u, », w must be the same for ¢ -+ 27 as for ¢, we may put

U & COS S¢p, % o sin $¢, w & COS Sob,
where s is an integer.
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Then, for u, v, w as functions of 6 it is convenient to take equations (51), (54), and
(56), which become

d*u 25 cos @ «? dw

d02+ t0 +[2+K—(1+82)COSG(320]’M—'.—"U+§@=O,. (57)

sin® @

d02+ t0 +[2+K—{1+32(1+c)¥cose020:|v

scos @ se du
—(2—]— )Sm20 —nddd— =0, T (58)

«? du sv
‘2—w—c<0—l—e-+ucot0+m>. e e e (99)

Differentiating (59) with respect to 6, dividing by ¢ and subtracting from (57),

2 9 __sveosd s dv K 1 cjgg
(2 + K* — s* cosec 0) w= sin® @ +sm00l0 2 c/ db
Write wsin § = U, vsin § = 'V, thus,
dV K
2y «in2f — o2 av __ « w9
[(2 + «?) sin® 6 s]sma T 2<1+ > sin®f; . . . (60)
and (59) becomes
2
d0+sme—-£ws1n0 R ((2))

We are going to substitute from (60) in (58) and (61); the result will enable us to
eliminate V, and obtain an equation for w. :

We have
U— —_ —2—<1 +l>sm30—0 + s. Slnegg
- (2 + £%)sin®*§ — s°
therefore
dUu ©* 1 sin%0 d*w dw 2 (2 + #%) sin® fcos 6 46
a0 = _-§< + Z) @2 + &%) sin® 6 — [Sm 0 pt3c @+ #)sin*0 — 8 dw

s.sin 6 arv dvV. 2(2 4 «*)sinfcos 8 dV
ae + daé (2 + «?)sin?  — d6

+ (2 + #*)sin? 0 — & cot 075 —

Substituting in (61), we have, on multiplying by cosec 0[(2 + «?) sin® 0 — s*,
MDOCCLXXXVIIL—A. 3 Y
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530 MR. A. E. H. LOVE ON THE SMALL FREE VIBRATIONS
«? 1\ . . d?w
5(1 + ;) $in® 0[(2 + «*) sin? 6 — 7] ¥7

+ cot O[(2 + ) sin® 0 — 3] 70 4= w[(2 4 ) sin? 0 —

v
de?

— s[(2+ «)sin® 0 — 7] 77 4 s[(2 4 ) sin® 0+ ] cot 0 2
— gle+ s — PV =0. . . . ... (62)

Now, substituting for dU/df from (61) and for U from (60), (58) becomes

1 (v v 2 9 11 L2 27—V
o 6<d6’2 — cot ¢ 7 ~+ Veosec 0> +[24x>— {14 s* (1 + ¢)} cosec? 0] S
«? 1\ . 5 pdw av
se <£2w* 9 ] V) 230080—§<1+Z>Sm 9d6+8d0
sin? 0 \2¢ V5 sin @ sin® @ (24 «*)sin®d — & =0,

or, multiplying by sin 8[(2 + «?) sin? § — 7],

V —
sin® @

(@4 ) sin? 0 — ] 25 — [(2 4 ) sin® 0 + s cob 0 7 +[(2 + i) sin? 0 — &7F
| —@3w[(2+xg)sin29—sz]+xgs 1—!—1 sin @o0s 022 = 0
2° ¢ Eae T

Multiply this by s and add it to (62), thus,

o N\[. .. Pw . . p) Ny 2 -
%(1 +Z>[81n202£+81n00030£} + {[(2+K~)sm20—-52]%c 5332}10:0,

or

d*w dw 2 4+ & §? _
559+00t6§§+<1+a—sm20>w“0' Do e e (63)

Also, between (60) and (61), eliminate V, then

d /(. ,dU U . o K K . pdw
C—i—é<sm0d—é>+Sin6[(2+;<2)sm20—-s2_]==—csmﬁcosﬂw———zsmé’@. (64)

The equations we have to satisfy are (61), (63), and (64). Writing u instead of cos 6,
these become
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d ndw] | (24E  #\
dﬂ[(l—-p)dp]-[«(l_m —-l_Pg).u_o, N ),
d daUu 5% I dw
@ — Y 2 . — 2| 11 — 2\ %
ala=@ g+ 2o - ) v=clfutia -0 %] ©0)

' «? dU
sV:(I-—[Lz)<§éw+-:Z;L). Coe e e (67)

Of these (67) gives V when U and w are known. The solution of (66) consists of
two parts—one, the complementary function which satisfies (66) when w=0; the
other, the particular integral which satisfies (66) when w is a solution of (65). We
may show first that this particular integral is proportional to (1 — p?) (dw/du);
take it to be A (1 — p®) (dw/dp). -

For, writing (65) in the form

dPw dw . 2 + &
(1= = 2wl =) B = = =2 1

and differentiating, we have

LA NS N l 2y 4w
dﬂ[(l M)df‘{(]'—y)d#}]-l_ﬂ'g{(l_”)dﬂ}
| 2+’62 2d,_.w Cayr

- 1+c[(1—”)d,,,"’5'”“”’]’

and the left-hand side is found by using (66) to be

I ©? dw  «?
~|+e—1f)o - =S,

so that M (1 — p?) (dw/dy) is a particular integral of (66), if

KR2A =24+ A)/(14+c)=2 4+ — K*[2,

which are both satisfied by

02+x9' (68)
Thus,

U= © 14¢

is a particular integral of (66).
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16. We have now to consider the complementary functions.
In equations (65), (66), write

(2+-K2)/(1+C)=OL(OC+1), 24+ =B(B+ 1),

then these will be the equations of tesseral harmonics of orders a, B respectively.
Calling T¢ (1) the solution which does not become infinite for w = 1, we have

w = ATY (n),
()
U =BT (1) + M (1= ) . 5 (T ()] .
To find V we have

au _ : it
& o -2} = 0 ()
so that
4 B d
V= (1= ) 0T ()} AT ().
Hence,

w= AV = ) S T W+ g T () |conspe,

[V(T——— T (w) + \/(1 — @ )d (Te (M)}] sin s e, ‘r . (69)
w = [AT® ()] cos sp e J

17. Properties of T (w).
The differential equation is
o @T dr

T
M+oc(u+1)T—it;§T=0, ... (70)

and for any value of a, real or imaginary, this is satisfied by the integral

[[ = cos b /(42 — 1)} cossp .
~ Also, if we put |

1 )= 1 .0

* Heing, ¢ Handbuch der Kugelfunctionen,” pp. 225 ef seq.
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P, (r) is a solution of the differential equation of zonal harmonics

d%{(l_’ﬁ)%}—l-a(a-{—l)f):& e e e (T

and this is satisfied by the integral

[ tm— cos /(2 = 1) dg.

This form would not be adapted for arithmetical work if a were imaginary.

If o be imaginary, then will a(a + 1) = — (4 + ¢?), where ¢ is real. If ¢ be
integral, (71) is the equation of MEHLER'S ‘Kegelfunctionen’; and it is shown by
NEeumANN* that this equation is satisfied by the integral

r’ cos g dp
o v/ (i + cosh )’

and this is finite when p = 1, but infinite when p = — 1 ; the form of demonstration
adopted holds equally when ¢ is not integral. '

In general, writing — w = a (2 4 1), and changing the independent variable to
z= (1 — p)/2, the equation for P becomes

PP 1-% Al e,
d? " 2(l =2 dz  z(1l—2)" 7

so that one solution for P is the hypergeometric series F (a', 8, v/, 2) where &' + 8/ =1,
o'’ = w, ¥y =1; and this is finite for 2 =0 or p = 1, so that

_ 1—p  wl@+2) [1—p\? o(@+1.2)(0+23)... (0+r—17) [1—p\r
Pl =1+0=5"+ =55 <2 >+ !l < 2 >+

which converges for all real values of u between -1 and — 1, but diverges for
p=—1

In our equations the quantity B is always real; the quantity @ may be complex of
the form — 4 4 1g;in any case we have always a solution of our equations in series or
definite integrals. ,

18. Supposing T (w), T (v) known, we shall be able to write down the values of
o1, 0y, w; and then, supposing the surface bounded by a small circle u = const., we
have for the boundary-conditions

# “TUeber die Mehler'schen Kegelfunctionen,” ¢ Mathemat. Annalen,’ vol. 18, 1881.
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534 MR. A. E. H. LOVE ON THE SMALL FREE VIBRATIONS
o+ oo, =0
. 2’}.....q...ﬁ(72)
w =0,

for some fixed value of p.
Returning to our equations (69), we have, omitting the ¢ factors,

ou d
aoc; =w —:w—J(l—-M)—ib,

aa~2=w+ucot0—|—;§—é= \;{(’;ii;)
aw=— g+ sn 0z <sm0> —vi—m U M)d#<~/(1—#2)>

hence,
d dT® B
agy = {ATO() = v/ (1= ) 5 DAV (L =) T8 s 0 |Joos specs,
' dT<> B
aoy = { Tm@)+~41 gﬂ}Avql p2) —o (M ;thgT?mi

8

(s) |
+ V(1= ) [\/(1 T(S) (I‘“) + = ‘\/( )dlfllf#)}}cos spe?,

{\/(1 [)\A\/(l- ) T)(M)—|~«/(1 Q)Tw(”)}

,U:

A B Ty : ,
+a ‘U“)dﬁb[«/(lx ) T2+ dﬂ(ﬂ)}}sm&ﬁem;

} A

or

2 EoN aT, b om
CLUI=A[<1+%——:—/}>T¢—)\[L(Z—]—B[ 'lﬁ—l-

rmalf14 2 a2 )

daT
dm= — 2A [f—;?TaJr W] +;[B (B+1)T,— 2 d:],

v

(73)

omitting ¢ and ¢ factors, and writing T, and T, for TO (), TY ().
~ Substituting in the boundary-equations (72), we have, on elimination of the ratio
A : B, the frequency-equation

{[+ot5 -0 o)na0- G)f'«csz“HB(BH)T — 22

)bt -

= 28\ (1 — o-)<
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and, if u = 0 at the edge, or the shell be hemispherical, this is

dT AT,
/l'.

Ta[:l+o-+i2cz—-s)\(1—-0'):|,8(,8+1)—282)\(1—0') (75)
In the case of the symmetrical vibrations s = 0 and the expressions found involve
indeterminates. In any other case the above expressions show that it will not be
possible for the motion to be purely tangential, since, for this, A = 0, and we should
have to make dT,/du = 0, T, = 0 for some value of p.*
19. In the case of the symmetrical vibrations we have to put u, », w independent
of ¢ in (54), (55), (56) ; this gives

d*u du 24« 1 j
d0°+00t0d0 I <1+c sin26>u_0’ !
1
+ ..|_ + 2 o —

d62 cot 0 <2 “ sin? 9> v=0, ,F I (76)
&2 dw

oy - Y |

2cw—d()+ucott9 J

From which

=By (1 — ),

y

(77)

2¢
w= o (¢ +1)AP, (n), J
where B, « have the same meaning as before.
Hence,

ao = A [(1 + i”> a(x41)P, — p%]ﬂ

2 - dp
0&0'2=A[K—§oc(oe + 1)P.,+,J,gﬂ,

ar,
aw=B|BE+ 1P, — 2]

(78)

The boundary-equations (72) become

2] (et 1) Pom (1 — o) ] =0, |
AH1+(1+0)K2} (@4 1) P, — (1 ),L;gJ 03 .
B@w+um-w@}0J

* Using only the differcntial equations, Marmmu supposed that there could be unsymmetrical
tangential vibrations.
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which can be satisfied either by

B=0, and {1+3(1+0)}ela+ DP—(1=c)pf =0, (0)
or by
apP
A =0, and ,3(,3—]—1)1)3—2,/,#:0 e (81)

This gives two types of motion.

In the first the motion is partly tangential and partly radial. Since P, (u) cannot
have equal roots,  and w cannot vanish together, or there are no lines of no displace-
ment. The displacement is purely radial along the lines dP,(u)/dp = 0, and
purely tangential along the lines P,(u) = 0. The ratios of the frequencies of the
component vibrations of this type depend on o, i.e., on the material of the shell.

In the second type the motion is purely tangential, every point moving through a
distance along the parallel to the edge through it, which is the same at all points of
the parallel. The lines dPg(u)/du =0 are nodal. The ratios of the frequencies of
the component vibrations are independent of the material of the shell.

20. For a hemispherical bowl u = 0 at the edge.

(1.) In the motions of the first type P,(u) is to vanish with u; hence, a is an odd
integer, or, ¢ being any integer, we have

24+ «)/(14¢c)=(20+ 1) (2t 4 2) = o say,
where
e[ =4 (14 o)1 —a)]=k(1+ a))(1 — o).
This gives
K(l—o)—2*(1+ 30+ o)+ 4(0—2)(14+0)=0; . . . (82)

this equation has always real roots.
If «2, «’? be the roots, and p,, p’; the corresponding values of p, according to the
formula p®a?p = nk?, then

i=» [ d . ’ /it
u*::Z V(1 “/*2)21— {P25+1(/")}{Aiewit+Aieml}‘}’ 1

i=0 | (ad ' .
»=0, - (83)
= 2@:«7 4\/(1 _ “g)(i + 1)(27: + 1)P2i+1 (,L) {_6_22 Ai eLpit + %Alz e;p%t}} ’

i=0 | : Ki K J

| To get arithmetical results, let us choose o = §; the equation for «* becomes
k=6 {1+ (4 1)(204+ 1)} +8{(20 4+ 1)(20 + 2)— 2} =0,

and k; K’;- are given by the table :— '
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i 0 1 2 3 4
| 6{(1+ G+ 1)(2 + 1)} 12 42 96 174 276
8{(2i +1)(2 + 2)— 2} 0 80 994 432 704
2 12 { 43 48+ +/(2080) | 87 4+ +/(7137) | 138 + /(18340)
i 3464 ... | 6324...| 9676... 13095 . . . 16:505 . .
s 0 1414 ... | 1335... 1587 ... 1604 . . .

The tones of the second series are all near together ; those of the first are separated
by intervals rather less than for a harmonic scale.
(2.) In the motions of the second type A = 0, and P, (u) vanishes with w; hence 8

is an odd number, and

2 4 1% == (264 1) (20 + 2) =

If p”; be the value of p corresponding to «”;, we have

and

and «”; is given by the table :—

w =0,

V=) 1 P (03B
Al : .

(84)

(85)

i 1 2 3 4 5

wi—2 10 28 54 88 130
" 3158 5291 7347 9380 11:401

NN 1 1673 | 2323 2:966 | 3605 . ..

These intervals are nearly fifths.

MDCCCLXXXVIIL.—A.
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§ 8. Vibrations of Cylindrical Shell.

21. As a further example, suppose the middle-surface of the shell eylindrical ; and,
to fix ideas, suppose there is a rigid disc at one end, and at a distance ¢ from it a free
edge bounded by a circle. ‘

Let @ be the radius of the circular section of the cylinder and a, 2, ¢ cylindrical
coordinates of a point on the middle-surface, the origin being at the centre of the
rigid dise.

In the equations of motion of Art. 18, we have to put
hy=1, hy=1/a, 1/p,=0, 1/p,=1/a.

- Taking u, v, w proportional to 7, and «*n = p%a’p, these equations become

o 1 Pu  3m 1 oW | m—mn 1 ow
0 )u+a2 8<[>2+ m_':?;<842 +c;8;8_¢>+ m—l—ngéz_'-()’ T (86)_
' x? 1  Sm—n/l v 1 & w1 w
a72+“ +a¢z‘aggz‘+m<aééz,;é+aaza¢>+ mindap=0 - - (87
«* dm 1 o’ m—mn10ou
Etgw-—m+nd;,é<w+8jj3>+2m+nc:§z~." PN ' , . ,.‘, < (88)
- Put 4mpB/(m + n) = «* — 4m/(m + n), then (88) is
au B
Bw = + aa S 1))

and (86), (87) give

4 O 1w  S3m—nl il 2 m—n 8%&) _
;m,-{-%ézg+ + 0P T m+n a828¢+a6 m+n<8z8¢+o'a'az =0
v | ‘4m 1™ , 3m—nl 1 4m a3v>

il s m*ﬂ;;azaﬁamm%( aza¢+a¢ 0,

or

P/ 4m 20 m 1 1 m —n i" v
@<m+n+—/§ m+n>+a2 0¢p? + o? +a[_1 + 2m+n<1 +B>Jaz8¢_‘o’ (90)

R LN SIS (TR () E S LI

m +n
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Let u o< cos s¢, v o sin s¢ ; then for u and v as functions of z we have the equations

d’u dv )

Lo (92)

j—z + Do —C :% =0, JI
where
. - ~
A=t (14%)
02—
e | -
_3 20 146 '
C= @+1_06>,
1 1+8 2
D= - <K2 s? 8 l_:;‘>
- To satisfy these, take
u=Pc?s,u,zL w U= -'—P’sin,uz . (94)
V= Qsmpzj v= Q cos puz
Then S
P(B—Ap’) +QCu=0,
 PG+QD—@)=0,
PB—-A®)+QCu=0,
PCu+QD—=p)=0,|

whence - -
- (B— Ap?) (D — ) — C? = 0.

This is a quadratic in p?, viz.:
Apt—(B+AD+C)p*+BD=0; . . . . . (95)

and we have

Q:QREZDQ‘IJ:QPjﬁj.}L .. (96)

Let u,2, wo? be the roots of the quadratic (95), then
175 o q

u = cos s¢p e ? [P, cos uz + P, cos pyz — P’ sin uz — P’y sin ,uzz], )
T S . S ., : . (987)
) v = sin sp e 2 [Q sin pz + Q, sin uyz + Q'y cos pyz + Qycos gz, | :
so that - S o
Bw = cos s e [(sQ; — oap P)sin pz + (sQy — oap,Py) sin pyz]
+ cos s H[(sQs — oy P) cos s + (U — capsPycos) pel |
3z2

(98)
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Caleulating from these, we find, dropping the time-factor,

o, = — cos sp[p, Py sin pz + p, Py sin pyz 4 P’ cos iz + pyly cos pyz],

]

/s B 41 a ,3 + 1 5 .
oy, =  COSS$P L<9 é)—[;* Q, — »g'- P, > sin pz + (s ) -Qy — ‘,,’g~ P2> sin ,LQZ} ‘
|

) L., opp / 1 P |
+ cos s¢ <§IBZ Q) — ;,;’I‘P1> COSP«Y“I'Q”B—F Q,— >cosl’“27"|’ (99)

== slisp L<,u.lQ1 — S,Pl > cos uz + <,%Q;1 —_= P > cos p2~]

r
!
1
|
— sin s¢ </.L1Qll - ; P'l> sin iz + (,UQQ'2 — > sin p)z} Jl
\

If there is a rigid disc at z = 0, then v and w vanish with z, so that

Qll + Q,g = OJ
P+ ply = 0'j
The first of these is, by (96),

Py a1y
wf —D +

(100)

pi—D=

so that (100) can only be satisfied by P}, P’y, both zero, and consequently Q'), Q'
both zero, unless we take > = p? and Q') 4+ Q' = 0.

If p® = o we have P} = F Pyand Q') = — Q, so that the terms in u, v, w,
o), 0y, @ which contain Py, Py, Q'), Q'y all vanish identically.

It follows that to satisfy the conditions at z =0 we must drop out the P’, Q’ terms.

The boundary-conditions at z = ¢ are—

, = 0,
EIRAE }= S o)

w =0,
where we have to take only the part in P, P,, Q,, Q, and to write

(J/ﬁ Cry
= e (Qq::-—~ D,
Ql /"‘IN 1 2 -D

IHence, we have

. & osB+1 C B _
Py sm,ulc[l + 8« B Mg_bjl—l-/ug]?zan M€ L +/3 : 8 DT

and

QN TR
s e[t — - O NI i
P, cos “1(’<a_,u19-—])>+P2 cos ,uzc<a J)>_O.
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Eliminating Py, Py, we get

py Sin gy ¢ cos py ¢ <‘3 — ;'“:_QJ_)> <1 + ‘;: _ %‘?’ B Zl ,u,:?C; 1)
= 1, SIN Py € COS py € (% - 241/;12—0"1.>> <] + ;—2 - faf @_;1 ,uf(i D> ’
or
sin a4 ) o[ 0 S Bt o P s = )
+ e <1 + ;> <#19/i D pzzlﬁ D> _+ 2<1 + %> (b = #2)}
+sin (py — o) € [Cz (;lffyl()/;l(;fi) ﬁ) gf' B-/jg-l - Coj g 23- g <#12%i D #22'04_2 D>

— Cpp(1 + Z> <,,,1_2'L:D + ;[}LFD> + 2<1 + 2> (1 + #2)} =0.

\

From (95), A (1 — D) (1! — D) = AD* — D (B + AD 4 €% + BD = — DC?;

ssubstituting and re-arranging, we find

' . ] 2 2
sin (u, + py) c{ ACuy, B+1_ opth ;9 — A (up, + D) <<f_§ A+l _ ok ﬁ_ﬁ\]

M1t po B a @ B B )
—sin(n —p)e B oD A= D)(% P )
= [AC,U«I,U«z o B +CD . B A(ppy—D) . B JTayT 3 >_|’ (102)

this equation gives the frequency.
- 22. In the case of the symmetrical vibrations, s == 0, and we have

= +/ B/A, p2=+/D,

and P, =0, Q, = 0, but Q, is tinite. Thus, the equation just written involves some
indeterminates.
We take the solutions
u = P, cos pyz,
v = Qg sin pez

The conditions = = 0, o} + oo, = 0 reduce to

<1 + %) Py sin gy e =0, Qupg cOS pgc = 0;
hence, either
Q,=0, and sinp,¢c=0,

or
P, =0, and cos pyc=0.


http://rsta.royalsocietypublishing.org/

N

a
A
1~
A B

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

%

S

JA \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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This gives two types of motion.
In the first, the motion is partly tangential and partly radial ; the expressions for the
displacements are

i=® e
% = EP o8 — 7,
i= : - C

I — )

v=0, (103)
‘ -0 ai wry

w-?;g,—_—r__—lwc P;s In————a ey,
B

where the equation for « is Xcz = 7%, or

¢ ki (l—0)—2 .
Lokl —0 =2 _oma.
a? K Kz,__ (1 + 0_)2 _— 2% m , . . . . . . . (104:)

and p%a’p = n«®, ¢ being any integer.

:The displacement, is, for each normal type of vibration, wholly tangential along
the circles sin ¢mz/c = 0, and wholly radial along the circles cos imz/c = 0; there are
no points or lines of no displacement. The frequency depends on the length and
radius of the shell, and the ratios of the intervals for consecutive tones depends on o,
t.e., on the material of the shell.

In the motions of the second type the displacement is purely tangential, and is
expressed by :

% =0, I

_ 3 2+ 1me ,‘L ¢ I '
fu_i§=‘,0st 5 cci’, ;,» oo . {105)
w=0, ‘ J

Where the equation for the frequency is
4 ¢ = (Zz —I— 1) 7% o?,

or
4[,,_.(2z+1)27r3n/09 oo . . . .. (106)

In this case the circles sin (27 4 1) wzkzc = 0, are nodal lines. The 'fréqileﬁcy
varies inversely as the length of the cylinder, and the intervals between consecutive
tones are independent of the material of ‘the shell.

Note.~—July, 1888.—In the paper as read some examples were next given of the
application of the method to problems of equilibrium. These are now withdrawn, as
of little physical interest, and not directly relevant to the subject of the paper (see
Summary).
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§9. Summary.®

This paper is really an attempt to construct a theory of the vibrations of bells. In
any actual bell complications will arise, which have been omitted in this discussion,
partly from variations of the thickness in different parts, and partly from the
want of isotropy in the material. We can hardly expect a metal which has been
subjected to the process of bell-manufacture to be other than very =olotropic, while it
is notorious that bells are usually thickest at the rim. The difficulty of the problem
in its general form seems to make it advisable to begin with the limiting case of an
indefinitely thin perfectly isotropic shell, whose thickness is everywhere constant, and
so small compared with its linear dimensions, that powers of it above the first may be
neglected in mathematical expressions, which contain the first and higher powers
multiplied by quantities of the same order of magnitude.

Of previous theoretical work we have examples in Lord RavrrieH’s ¢Theory of
Sound,” and in his paper on the “ Bending of Surfaces of Revolution,” in AroN’s and
MATHIEU'S memoirs, and in IBBETSON’s treatise on the Mathematical Theory of
Elasticity. In the ‘Theory of Sound’” Lord RAVLEIGH treats the vibrations of a
thin ring or infinite cylinder of matter, supposed to be deformed in such a way that
the motion is in one plane and the elements remain unextended, and remarks that at
the time of publication this was the nearest approximation to a theoretical treatment
of bells. He afterwards applies his theory of the bending of surfaces to obtain a more
exact analytical method of treating the problem, but his disregard of the boundary-
conditions which hold at a free edge appears to vitiate this theory, Arox can hardly
be said to have attained a theory of bells, and the interest of his memoir is mainly
mathematical ; his inaccuracies have been already referred to. I have also previously
referred to the objection which lies against MaTHIEU’S method of treatment ; this and
the complexity and difficulty of some of his analysis seem to render a new method
desirable. T shall have to refer to IBBETSON later.

The theory here put forward rests on the form of the function expressing the
potential-energy of deformation per unit area of the middle-surface of the shell.
Supposing that the surface is stretched and has its curvature changed, we find that
the energy consists of two terms. One of these contains only the functions defining
the stretching, while the other contains also those defining the bending of the middle-
surface. The modulus of stretching is proportional to the thickness, while the
modulus of bending is proportional to its cube. Unless, therefore, the functions
expressing the stretching, viz., the extensions and shear of rectangular line-elements
of the middle-surface, are of a higher order of small quantities than those defining
the bending, viz., the changes of the principal curvatures and of the directions of the
principal planes, the vibrations depend on the term which involves the stretching, and
not on that which involves the bending. Now, it seems to have been universally

* Partly rewritten, July, 1888.
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assumed by English writers that the reverse of this is the case, viz., that the vibrations
take place in such a way that no line on the middle-surface is altered in length. This
will be borne out by a reference to Lord Ravimicu and IBBETSON The theory of
the present paper rests on the fact that the functlons expressing the stretching and
those expressing the changes in magnitude and direction of curvature are of the
same order of small quantities. This is proved in thefollowing way :—The potential
energy consists of two parts; one, Q,, proportional to the thickness % ; and the other,

Qy, proportional to #°. The first is expressed in terms of the stretchmg, and the
second in terms of the bendlng of the middle-surface. Some previous theories have
proceeded as if Q, only occurred. If this were the case, we ought to get an approxi-
mation by supposing that Q,/A = 0. This is equivalent to assuming that there is no
stretching of the middle-surface. We should therefore get an approximation by
supposing the surface inextensible to the first order. The stretching and the bending
are expressed to the first order, by linear functions of certain differential coefficients
of the displacements. Our supposed method of getting an approximation is then to
make the functions expressing the stretching vanish. Now, I have shown that the
functions expressing the displacement are thus, to a certain extent, determined, and
that in such a way that the boundary-conditions cannot be satisfied. The boundary-
conditions referred to are the exact conditions found by retaining the complete
expression for the potential energy. Tt is inferred that the functions expressing the
stretching cannot be taken equal to zero for an approximation; or, in other words,
small cbmpared with those expressing the bending; and, thus, Q,/A* and Q,/h, are of
the same order of magnitude. The conclusion that Q, is small compared with Q,
seems inevitable. ‘ » ‘ ’ '

The argument breaks down for a plane plate through the vanishing of the curvatures ;
Q, is then alone of importance. In the case of an open shell or bowl whose linear
dimension is small compared with its radius of curvature, and large compared with its
thickness, both terms are important. When this is so, we get a class of cases for
whlch the linear dimensions concerned are of three different orders of magnitude, and
this case will not come under the method of the present paper. It may be compared
with the problem of the watch-spring mentioned in TaomsoN and Tar’s ¢ Natural
Phﬂosophy, Part 2, p. 264, which stands between a bar and a plate. The very open
shell or bowl stands in the same way between a plate and what I have called a shell.

" The theory of this paper proceeds as if Q, alone occurred. It is to be regarded as
the limiting form for indefinitely thin shells. A complete theory of bells, even when
regarded as uniformly thick and isotropic, could only be obtained by using the exact’
equations formed by retalmng both terms of the potential energy.

Again, Enghsh writers have assumed that the potential energy, which they suppose
to depend only on the bendlng, will be the same quadratic function of the changes of
principal curvature as it is for a plane plate. The same authorities as hefore may
be quoted, and we may also refer to a question set in the Mathematical Tripos,
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January 18th, morn., 1878, question 9. To test this assumption involved the investi-
gation of Artt. 7, 8, and the result is that it is only in the case of a sphere supposed
unstretched that the potential energy has this form. This is the case treated by
Lord RavireieH, but his method still fails, for a complete sphere cannot be bent
without stretching, while, if the sphere be incomplete, the conditions which hold at a
free edge cannot be satisfied ; this is explicitly proved in Art. 14.

- A general result is derived from the consideration of the functions expressing the
kinetic and potential energies, Q, only being retained. Both these functions are
proportional to the thickness of the shell, and thus the periods of vibration are inde-
pendent of the thickness. That this result holds for a complete thin spherical shell
vibrating in any manner has been demonstrated by Lams (‘ London Math. Soc. Proc.,’
vol. 14, 1882, p. 52). His equations (7) and (9) when reduced are independent of the
thickness. ' :
- Two géneral results are obtained without solution from the equations of motion,
The first is, that vibrations involving displacement along the normal only are impos-
sible except in the cases of the plane, complete sphere, and infinitely long circular
cylinder.” IBBETSON’S treatment of the problem appears to assume (1) inextensibility,
(2) the incorrect formula for the energy, (3) normal displacements. The other result
is that any surface of revolution can execute purely tangential vibrations which are
symmetrical with respect to the axis of revolution, and in which the motion is purely
torsional, or perpendicular to the planes through the axis. These must not be
confounded with the familiar vibrations of finger-bowls, which are most probably a
type with two nodal meridians.*

The theory of the vibrations of a thin spherical shell bounded by a small circle is
an interesting example of the general theory of vibrations of an elastic solid. In an
infinite solid there are two types of vibratory motion, the longitudinal and the
distortional, both of which are propagated as waves. In a bounded solid this state of
things is modified by reflexions at the bounding-surfaces, so that the purely longitu-
dinal and purely tangential waves do not. in general exist separately. Again, in all
cases of displacement in one direction only, as in the vibrations of strings, bars, and
plates, there may be displacements in different directions which are independent of
each other, with their corresponding nodal lines or points. 'This also is modified in
the general solid. The types of vibration, for example, of a portion of a spherical
shell bounded by a small circle are partially made out in this essay. One immediate
result is that there are in general no nodal lines, properly so called. In any type the
displacement along the parallels vanishes at one set of meridians ; the other displace-
ments vanish together at another set of meridians. These sets are ranged at equal
intervals round the sphere. There appears to be good reason to suppose generally
that the corresponding proposition will not obtain with reference to nodal parallels.
The establishment of the fact would require a solution of the general frequency equa~

% RAYLEIGH, ¢ Sound,’ vol. 1, Art. 234.

MDCCCLXXXVIIL—-A., 4 A
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tion, and this I have not been able to effect. One case, however, is readily solved,
and that is where the displacement is symmetrical with respect to the pole of the
sphere. It appears here that the vibrations divide themselves into two types, one
purely tangential with displacement along the parallels, the other partly radial and
partly consisting of displacements along the meridians. There are no nodal meridians.
In the purely tangential vibrations there exists a series of nodal parallels, whose
number corresponds to the type of vibration. The intervals for the various tones are
each of them nearly a fifth. In the partly radial vibrations the radial displacement
vanishes at one set of small circles, and the tangential displacement at another set.
The number and position of the nodal circles for the purely tangential vibration
coincide exactly with the number and position of the circles along which the
tangential displacement vanishes in the corresponding partly radial mode. The
vibrations of the two types belong to different normal modes of vibration, and have
different frequencies. If we like to extend the meaning of “nodal lines,” so as to
include the small circles just referred to, then we may state another result in the
form that for partly radial vibrations there are two periods and modes of vibration
which have the same set of “mnodal lines.” The tones of one of these sets are all
very near together ; those of the other set are separated by intervals nearly the same
as for a harmonic scale. ’

A discussion of the vibrations of an elastic shell in the form of a circular cylinder
closed at one end by a rigid disc perpendicular to its axis leads to similar conclusions
as to types of vibration and their definition by nodal lines.

It is unfortunate that solutions of the frequency equation for the case of two
““nodal ” meridians dividing the shell into four equal portions could not be obtained,
as these probably include the gravest mode of vibration of which the shell is capable.
The tones of the symmetrical vibrations discussed are very high, and the theory in its
present state cannot easily be tested by experiment. There is, however, one result
which would seem to admit of practical verification, viz., it is found that, for similar
thin shells, the frequency is independent of the thickness, and varies inversely as the
linear dimension.
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